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The stochastic, damped K d v  equation 

Russell L Herman 
Department of Mathematics, St Lawrence University, Canton, N Y  13617, USA 

Received 3 October 1989 

Abstract. We apply singular perturbation theory to the study of a damped K d V  soliton 
under the influence of space- and time-dependent external noise. We find that asymptoti- 
cally the shape of the averaged solution approaches that of a Gaussian packet, whose 
amplitude decays and width grows in the same way as in the case of purely time-dependent 
noise. 

1. Introduction 

In this paper we will consider the effects of external noise on the damped Korteweg- 
deVries ( K d v )  equation in the form 

U, + ~ U U ,  + U,,, = E { ( x ,  t ) R [  U ]  - EYU. (1) 
This problem has been studied by Wadati and Akutsu [l], based on earlier work of 
Wadati [2] on the stochastic K d v  equation without damping, where the external noise 
was purely time-dependent and R[u] = 1. Recently, plasma physicists have examined 
the propagation of an ion-acoustic soliton in the presence of noise. We begin in section 
2 by presenting a possible derivation of the stochastic K d v  equation from the plasma 
fluid equations. This will be followed by a discussion of the theoretical and experi- 
mental results of the above-mentioned works. 

Equation (1) can be viewed as a perturbation of the Kdv equation, which is a well 
known integrable evolution equation. In the late 1970s several researchers investigated 
such perturbations of the K d v  equation, but did not apply these results to the stochastic 
K d v  equation given in (1). The methods used were based on the inverse scattering 
transform ( IST), and involved the study of the effects of the perturbation on the so-called 
scattering data. In section 3 and appendix 1 we sketch a more direct approach to 
investigating perturbed Kdv equations. In the sections to follow we apply the results 
of this method to the study of the stochastic K d v  equation for the cases of space- 
independent and space-dependent noise, as well as the cases of damping and no 
damping. These results are then compared with those which have been found pre- 
viously. 

2. Motivation and derivation 

In 1966 Washimi and Taniuti [3] derived the Kdv equation as the equation governing 
the propagation of small-amplitude ion-acoustic waves in one dimension, using the 
reductive perturbation technique. Fluctuations in the dynamical variables can lead to 
perturbations of the K d v  equation. In this section we will employ the reductive 
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1064 R L Herman 

perturbation method to obtain a stochastic K d v  equation, where the stochastic term 
can arise from the fluctuations induced by external forces. 

The starting point of this analysis is the set of plasma fluid equations for a 
collisionless, magnetic field-free plasma of cold ions and warm electrons ( T i s  T,) [4]. 
Under the assumption of isothermal electrons with negligible mass, satisfying the 
equation of state Pe = nekT,, the electron fluid equation reduces to the equation 

(2)  kTeV ne = eneV 0 

which can be solved to give 

n,=noexp - (3 
The other equations needed are the ion fluid equation of motion 

a e 
- ~ j +  ( ~ i  a t  M 

V ) q  = -- V @ +  F ( x ,  t )  

(3) 

(4) 

where F = - ( V p / p )  + ( l /p)Feyt  is the contribution from external and pressure forces, 
which will be the source of noise for our problem. We also have Poisson's equation 

- v'@ = h e (  n, - ne) 

a 
- n , + V  (n ,u , )  = O .  (6) a t  

( 5 )  

and the equation of continuity for ions 

In these equations k is Boltzmann's constant, T, is the electron temperature, ne (n , )  
is the electron (ion) number density, U, is the ion velocity, and @ is the electric potential. 

Equations (3)-(6) can be cast into a dimensionless form by the transformations 

X I =  x / h D  t i =  C , f / A D  U' = U /  c, n '  = n,/ no 

4 = e@/ kTe n: = ne/ no F'= FAD/cl 
( 7 )  

where A = ( k T , / 4 ~ n , e ~ ) " ~  is the Debye length and c, = ( kTe/ M)"2  is the ion-acoustic 
velocity. The dimensionless plasma fluid equations are 

V n e =  n,V4+n,=e4 (8) 
U, +(U. V ) U =  -Vd + F (9) 
n - ne = -V24 (10) 

n, + V - ( n u )  = 0 ( 1 1 )  
after dropping the primes. As we are only interested in one dimension, we define the 
component of the ion velocity by U and rewrite the fluid equations as: 

U, + UU, = - 4x + F (12) 

n -em =-A, (13) 

n, + ( n u ) ,  = 0. (14) 
We can now apply the reductive perturbation technique to this system. Following 

Washimi and Taniuti [3], we define the scaled variables by 

( 1 5 )  5 = E ' / ' ( X  - vr) 7 = E 3 ' 2 f  



The stochastic, damped Kdv equation 1065 

where V is the velocity of propagation in the x direction. Since {n = 1, U = 0, C#J = 0) 
is a solution of the system (12)-( 14) when F = 0, we can expand about this solution 
using the series 

n = I + & n , +  &'n2+. . . 
4 = O + E 4 J 1 + & 2 4 2 + .  . . 

U = o +  & U l  + E 2 U 2 + .  . . 
F = 0 + E ~ / ~ F ~  + . . . . (16) 

Applying the transformations (15 )  and expansions (16) to the system (12)-( 14), 
one obtains, to lowest order in E ,  

v ' = 1  n = u l /  V = q51 = +. (17 )  

+ , + w g + f * g g g =  Fl' (18) 

To the next order, after some algebra, one finds the equation 

The stochastic Kdv equation can be obtained when we assume that the external 
force F ( x ,  t )  is Gaussian white noise for small E .  In the following we will define 
Gaussian noise by the averages [2] 

and by white noise we will mean 

( F , ( x ,  t ) F , ( x ' ,  t ' ) ) , =  N S ( x - x ' ) S ( t  - t ' ) .  (19b) 

XI means that we multiply n/2 products ( F ( x , ,  t , ) ,  F(x, ,  t,)),, and sum overthe ( n  - l ) ! !  
different combinations. 

Before leaving this derivation we call attention to related works, which have involved 
water waves. In 1972 Yajimi [5] studied the effect of irregularities in the bottom surface 
on the progpagation of small-amplitude water waves. In his derivation of the governing 
equation he expanded the relevant dependent variables in a Fourier series and averaged 
over the oscillating terms. The resulting equation was in the form of the Kdv equation 
plus a complicated perturbing term which consists of sums of Fourier integrals. 

In 1976 Kawahara studied the effect of random inhomogeneities on the propagation 
of water waves. In his derivation he used the method of smoothing [6] to arrive at a 
perturbed Kdv equation, which involved integrals containing particular correlations of 
the random function. In the special case in which these correlations are localised, 
such as Gaussian white noise, the perturbed equation reduces to a form of the 
Kdv-Burgers equation. 

In 1975 Wadati [2] studied the stochastic Kdv equation of the form 

U, - ~ U U ,  + U,,, = {( t )  (20) 

where 5 ( t )  is the time-dependent external noise. He showed that this equation was 
connected to a Kdv equation through the Galilean transformation 

U(X, t ) =  U ( X ,  t ) +  W ( t )  dt 'W(t ')  (21) 

leading to 

U, - 6 UU, + U,,, = 0. (22) 
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Thus, for a fixed l ( r ) ,  the equation is exactly solvable. He computed the ensemble 
average of u ( x ,  r )  by expanding the sech’ form of a one-soliton solution, in order to 
evaluate the statistical averages over sums of products of the stochastic variable, to 
obtain 

x 

( u ( x ,  t ) ) , = 8 ~ ~  (-1)“n exp(an+bn’) 
n = l  

where 

a =2r/(x-xo-4772f) b = 4 8 q 2 r 2  ((( r ) ( (  I ’ ) ) ~  = 2&S( t - r ’ ) .  (24) 
This form of (u(x, t ) ) ,  is the solution of the diffusion-like equation 

where b acts as a rime. Noting that for b = 0 

(u(x, r ) ) s l b = O =  -2v2 sech2(a/2) ( 2 6 )  
this can be solved using the usual Fourier transform technique [2] to obtain 

The asymptotic behaviour of the solution in ( 2 5 )  can be found for large and small 
times. For large t ,  Wadati obtained 

Thus, we see that the soliton amplitude decreases as r C 3 ” ,  while the width grows as 
r 3 I 2 .  Furthermore, under the effect of the random perturbation the soliton changes its 
basic shape, becoming a Gaussian packet. In later sections of this paper we will use 
the same approach to compute ensemble averages. 

Wadati and Akutsu [ l ]  extended this study to include the effects of damping and 
included N-soliton solutions. They again assumed that the noise was only time 
dependent. In the case of damping they relied on the perturbation results of Karpman 
and Maslov for the damped K d v  equation [ 151.  The general large-time behaviour for 
the cases of damping and non-damping were given in the forms 

( u ( x ,  r ) ) , -  constant x t - 3 ’ 2  exp( -constant x-5 No damping 

( u ( x ,  t ) ) ,  - constant x t-1” e-?‘ exp( -constant x g ) .  

The width is narrower and the amplitude is smaller in the damped case. 
In 1986 Blaszak extended the work of Wadati and Akutsu to the stochastic K d v  

hierarchy and the stochastic M K d v  equation [7,8].  The form of the stochastic M K d v  

equation, which he treated, is given by 

t 
(29) 

”’) 
Damping 

t 

U ,  + 6 u 2 u ,  + U,,, = E V (  t )  

U, + cbnux = E T ( ? ) +  yu 

(30) 

(31) 

while that for the stochastic K d v  hierarchy with damping can be written as 
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where 4 is the recursion operator [7] generating the hierarchy. This operator is defined 
as 

4 = D2+4u+2u, D-’ (32) 
where D = d/dx and D-’ = 

Blaszak uses his results on Lax pairs for equations in soliton hierarchies [9] 
combined with the perturbation method of Karpman and Maslov to obtain asymptotic 
results in time, when the external noise is Gaussian. For n = 1 he obtains the same 
solution that Wadati and Akutsu had reported. We see that Blaszak has also assumed 
that the noise is purely time dependent. 

Over the past twenty years there has been much experimental research into solitons 
in plasma physics. Recently a group of experimentalists studied the propagation of 
ion-acoustic solitons in a noisy plasma [lo, 201. They found that such solitons are 
damped, and that their velocity decreases. They found that the amplitude decayed as 
t - 2 / 3 ,  whereas the study of Wadati, without damping, gave t - 3 / 2 ,  and that of Wadati 
and Akutsu gave t - ” 2 .  The experimentalists had compared their results with Wadati’s 
result for no damping. They had suggested that the agreement was good, as there was 
considerable room for error in their system. We note that the experimental value 
actually lies in between the two results. 

Our goal in this paper is to study equation (1) as a perturbed Kdv equation, using 
a direct approach. In the next section we present this direct approach. Having done 
this, we will first turn to the case of purely time-dependent Gaussian white noise and 
verify that we obtain the same results as discussed in this section. This analysis will 
then be followed by an analysis of the general form in equation (1) using the same 
methods. 

dx. We note that for n = 1 the stochastic Kdv results. 

3. Perturbations of the K d v  equation 

Since the mid 1970s several papers have been produced to describe the effects of 
perturbations on soliton solutions of integrable nonlinear evolution equations [ 11,121. 
Kaup [ 131 suggested using the IST to study singular perturbations of these equations. 
Kaup and Newel1 ( K N )  [ 141 had applied this method to the Kdv equation, as well as 
other perturbed equations. Around the same time Karpman and Maslov ( K M )  had 
also studied perturbations of the Kdv equation [15], using inverse spectral methods. 
In general, it was found that the effects of small perturbations could lead to a change 
in the shape and position, or phase shift, of the initial soliton. 

We now summarise the results of a direct approach to solving the perturbed equation 
[I61 

U, + 6uu, + U,,, = EF[  U ]  (33) 
subject to the initial condition 

u(x, 0) = 2v2 sech’ rp. (34) 
For small perturbations, we expect that the solution will remain close to the soliton 
solution for some time. Therefore, the solution we seek will be roughly a soliton with 
a slowly changing shape and location plus a correction. In order to insure that we are 
close to the soliton solution, we assume an asymptotic expansion of the form 

U(X, t )=u , (x , t )+Eu, (x , t )+  . . . .  (35) 
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To account for the slowly changing soliton parameters, we take 

uo(x, t )=27*sech2 7 x + - x o + x l  (36) 

and we define the two time scales, T = t and T = E t .  We further assume that the soliton 
parameters 7, xo and x1 depend only on the slow scale T. 

Introducing the expansions (35) and (36) and the two time scales into equation 
(33), we obtain an expansion of (33) in powers of E. Setting the coefficients of each 
order of E to zero, we obtain a system of equations to be solved for U,. The lowest-order 
equation is the K d v  equation, which will be satisfied if 

( r  ) 

XOr = 4772. (37) 

YU, = - 4 7 7 , ~  - 2777,4u4 + 2 7 3 ~ l . ~ m  + F [  U,] (38) 

~ = a a , - 4 7 3 a , + 6 7 a 4 ~ , + 7 3 a ~ .  (39) 

The first-order equation then becomes 

where 2 is the linearised K d v  operator 

The problem is now to invert this operator. In appendix 1 we discuss the details 
of this inversion for the general problem 

Y u ,  = 9. (40) 

Very simply, we expand u I  in an appropriate basis {a”, a:, A?} as 

ul = f ( A ,  t)@”(x, t ;  A )  dh +fl(t)@f(x, t ) + g , ( t j A f ( x ,  t ) .  (41) 
- 3i 

In the one-soliton case the expansion coefficients are shown to take the form 

f ( h ,  r ) =  dr’ (9’a) exp[8iA3( t - t ’ ) ]  Iot 2.rriha2(A) 

g l ( t )  = -2i7 Io‘ dt’(9/@.,)  exp[8v3(t - t ‘ ) ]  (43) 

f l ( t )  = -2i7 [ o ‘ d r ’ ( 9 ~ A I ) e x p [ 8 ~ 3 ( r - t ’ ) ] + 9 6 i ~ 3  ~ o t d t ‘ ~ o t ’ d t . . ( 9 ~ ~ , ) e , , r s , i c r - r f ’ ) ]  

(44) 
where the inner product is defined by 

Using the basis states for a one-soliton solution, we can rewrite the last two terms 
in (41), 

B = fI@.;”+ g,A? (46) 

B = g,[sech2 4+$4(sech2 4 ) + ] +  L,(sech’ 4)+ 

as 

(47 1 
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where the new coefficients are given by 

gi = lor dt’(9/sech2 4) 

= -- dt’(91[q5+8773(r-t’)]sech24+tanh 4). : I,’ (49) 

We note that for 9 independent of time these coefficients will grow in time, unless 
we impose the secularity conditions 

(91sech’ 4) = 0 (50) 

(91 4 sech’ 4 + tanh d) = 0. (51) 

Applying these conditions to equation (38), we obtain the slow time dependence of 
the soliton parameters [ 161 

XOT = -4772 (52) 
5 

T., =-!- I F [ u o ]  sech’ 4 d 4  (53) 
477 -x 

1 “  
x ,~=-{- ,  F [ u , ] ( 4  s e c h 2 4 + t a n h 4 + t a n h 2  4 ) d + .  

477 
(54) 

The 
The 
will 

first equation determines 
second of these equations 
give the correction to the 

the change in the soliton amplitude and width ( l / ~ ) .  
gives the leading-order velocity, while the last equation 
velocity of the soliton. 

We have found the effects of the perturbation on the soliton parameters in equations 
(52)-(54). From the analysis we are left with the first-order correction to the solution 
as 

X 

ui = 1 f(A, t )@.” (x ,  t ;  A )  dA. 
-X  

(55) 

In the following section we will use these results to investigate the effects of external 
noise on the soliton shape and location. 

4. Solitons in time-dependent noise 

We first turn to the equation 

(56) 
which is the case of time-dependent Gaussian white noise with damping. We begin 
by letting 

U, + ~ U U ,  + u , , ~ , ~  = ~ l (  t )  - EYU 

u ( x ,  t )  = 6(x, t )  + Eh( t ) .  

Equation (56) then becomes 

6,  + 66& + 6,,, = EL( t )  - E$ - E h ,  - s 2 y h  - EhCX - 6 ~ h 6 . ~ .  (57) 

T = E ~  6 = u o + E U * i + . . .  (58) 

Using the usual perturbation expansions 
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the zeroth-order and first-order equations which we must solve become 

~ o ,  -xo,~o, + ~ V U ~ U O ,  + v~uo, , ,  = 0 

2?(f,) = 9, - 2 v 2 y  sech' 9 - ( h ,  - l+ ~ y h )  

where 

9, = - 4 ~ ~ 4  - ~ v v , ~ v ,  U = sech2 9. (61) 

Note that we have kept the purely time-dependent terms h, - 5 + ~ y h  in the first-order 
driving terms. These will be used to determine h ( t ) .  

We have to avoid certain divergences caused by these extra terms in equation (59). 
During the inversion of the first-order equation, we run into a term of the form 

Carrying out this integral leads to a divergent term in the expression for f ,  , since we 
have a 6 ( h ) / A  from the inner product under the integral 

In order to avoid this, we set 

h, + Eyh = 5 
which leads to 

h(  t )  = 5(s) exp[sy(s - t ) ]  ds. Io' 
(Note that we have assumed that the perturbation is turned on at t = 0; thus, h(0) = 0.) 

Now we can proceed as usual. Employing the secularity conditions (50) and (51), 
we find 

Solving for U * , ,  we obtain the same form as the first-order solution to the purely damped 
K d v  equation [16] 

y(7)'+h2)[exp(8ih't) -exp(-8ihv2f)] 
12h(ih + v ) ~ ( ~ A  - v )  sinh(.rrA/v) 

@."(A t ;  A )  dh. (66b) 
-x 

Denoting this by u ld ,  the full first-order solution to equation (56) is given by 

U I ( 4  f )  = Uld(X, f ) +  h ( t ) .  (67) 
We can obtain results from averaging U,, in a fixed frame, as Wadati and Akutsu 

(68) 
where A. and 4o are the coherent parts of the amplitude and the phase, and E W, q O Q  
are the fluctuating parts. For the case above, we have 

w=o 770Q=6[0'h(s]ds. (69) 

had done in [ 1,2]. We will generalise their procedure by writing uo as 

u,(x, t )  = ( A o +  E W )  sech2(&+ &vOQ) 
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However, in the next section we will need the more general form in equation (68), 
though the computations for averaging will essentially be the same. 

Following Wadati, we expand the sech' C$ in (68) as 

u o = 4 ( 2 7 i +  E W) (-l)"+lm exp(2m4,) exp(2~m7,Q).  (70) 
m = l  

The types of averages which will occur in averaging this expression, are derived in 
appendix 2 as 

(e'"), = exp(?ic2( v'),) (71) 

( Wecv)s = c( w), exp(fc2( v'),). (72) 

Evaluating the average of uo in (68), using these relations, gives 
r - 

( ~ , ) , = 4 ( 2 ~ ~ + 2 & ~ ~ ( Q w ) , ~ , )  c (-l)"'+'m exp(am+ bm?) (73) 
m = l  

where a and b are defined by 

a = 24, (74) 

b = 2~*77;(Q*), .  (75) 
Noting that 

3c 

w(a,  b ) = 4  (- l )"+ 'exp(am+bm')  
m = l  

satisfies a diffusion equation, 

Wh - w,, = 0 

with the initial condition 

w(b=O) =sech2(a/2) 

the average of the solution in equation (68) can be written as 

(77) 

(78) 

The behaviour of the summation for b > 1 and b < 1 for W = 0 was given by Wadati. 
For b < 1, exp( - bk2) can be expanded, leading to the expression 

We note that Wadati and Akutsu did not perform the summation, which 
results can yield an interpretation as to the initial effects of the noise on 

For b > 1, we can use the expansion [2] 

(80) 

in our later 
the soliton. 

(2*" - 2 )  Bnir2"kZn X irk -- - 1 +  c ( - l ) n  
sin(irk) (2n)!  

where B, is the nth Bernoulli number. Substituting this into equation (79) gives 
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What these expressions tell us about the physics of the model can only be  found out 
after computing the ensemble averages ( and (Q2)s. As before, we expect to be 
able to say something about the asymptotic behaviour of the solution for large times, 
or for small times. 

For the case at hand, where W and Q are given by equations ( 6 9 ) ,  a and  b are 
now given by 

a =2#~,3 (82) 

b = 2v2(  ( 6 e  Ior h ( s )  ds)') 5 . 

We need to compute the average in the definition of b, equation (75) 

( Q 2 ) s = 3 6 ~ 2  Inr dtl ln' d t A h ( t ~ ) h ( t d ) ~  

To do  this, we first need to compute the correlation ( h ( r l ) h ( t 2 ) ) s ,  Using (40), we find 

Inserting this into equation ( 5 9 ) ,  we obtain the desired result as 

+ j , ~ d ~ 2 e x ~ [ - ~ ~ ( ~ ; - - l i ) l -  I n r  d ~ , e x p [ - e y ( t , + t , ) l  

1 8 N  
& Y  

( 8 6 )  -- - [ 2 ~ y t  - 3 + 4 e x ~ ( - s y t  ) - exp(-2syt)]. 

Therefore, we have found b as a function of t 

3 6 7 ' N  
E Y -  

b=- , [2syt - 3 + 4  exp(-eyt) -exp(-2eyt)] 

For large t and y Z 0 ,  we have 

7 2 7 ' N  
Y 

b-- t .  

Therefore, we can study the large-time behaviour of the average solution by using 
equation (81), for b >  1. The result is given by 

( U , ( X ,  t,is-(y & ) * - I 1 2  exp(-zsyt) exp[-( y/72Nt$)4;] ( 8 9 )  

for t >> y/72vZN.  Therefore, we see that the averaged solution behaves as a damped 
Gaussian packet, whose width broadens as t i l 2  and whose amplitude decays as t - l r 2 ,  
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as found by Blaszak [7]. Actually, though Wadati has reported the argument of the 
damping factor as --Eyt, in fact a check of their computations yields the same results 
as above, which is not surprising. 

For small times 

b = 24c2 yr]’Nt3. (90) 

Thus, for tc< ( 2 4 7 7 ’ N ~ * y ) - ’ ~ ~  we obtain the result from equation (80) 

(u, (x ,  t ) ) S =  277’ sech’ - 

= 277; exp(-$ayt) sech’(dd+ 12~’Nyc2t3) .  (91) 

We see that on the average the initial effects are to cause the amplitude to decay, the 
width to broaden, and the soliton to slow down. 

For the case of no damping, where y = 0, we can take the limit y + 0 in equation 
(87) for b. Doing this, we find 

b = 24Nq’~’t’. (92) 

Using (81) we find for the large-time behaviour to be 

for t >> (24Nq2 E ~ ) - ” ~ .  This result indicates that the soliton asymptotically approaches 
the form of a Gaussian, whose amplitude decays as t-3” and whose width grows as 
t3”. Again, we have found agreement with Wadati for the case without damping [5]. 

For small t ,  we use equation (80) to find 

(u, (x ,  t ) ) ,  = 2 q 2  s e c h 2 [ ~ ( ~ , + 2 4 N q 2 c 2 t 3 ) ] .  (94) 

Here we see that for small times the soliton again begins to slow down, since the 
velocity can be written as 

Thus, we have shown that through the application of the proposed perturbation 
method, combined with ensemble averaging in a fixed frame, we are able to reproduce 
the results of Blaszak [7] and Wadati and Akutsu [ l ,  21. 

5. Solitons in time- and space-dependent noise 

In this section we investigate the results of the perturbation method on the damped, 
stochastic K d v  equations for external noise depending on both x and t. The form of 
the equations which we will use is given by 

u , + ~ u u , + u , , ,  = E ~ ( x ,  ~ ) R [ u ] - E Y u .  (96) 

We will use the general perturbation analysis to obtain the first-order solution of the 
problem. We will evaluate the ensemble averages in a fixed frame in the same manner 
as we have done in the last section. 
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Note that the form of the stochastic term involves a function of U, which is different 
from the stochastic terms used in the last sections. Previously we had considered the 
case of R[u]  = 1; however, there are some divergence problems with this type of noise. 
The new form, (96), is an  obvious generalisation of the equation treated in section 2, 
and does not possess the divergence problems. 

After developing the first-order solution and averages for a general R[u], we will 
turn to the cases R[ U ]  = U and R[u ]  = U, in (96). These cases could correspond to 
dissipation and  velocity fluctuations, respectively. For example, if we transform the 
Kdv equation in equation (18) back to the original coordinates ( F ,  0), we have the form 

(97) U, + c,u, + uu, + $ A  ~ c S u , , ,  = 0 

where c,= (kT , /M)”’  is the ion-acoustic velocity, U the ion speed, and A,,= 
(kT,/47moe2). For regions where U,,, is small, fluctuations in T, will cause fluctuations 
in c,, which in turn will lead to a stochastic term with R[u ]  = U,. 

More generally, we could return to the plasma fluid equations in dimensionless 
form in (12)-( 14). Assuming that fluctuations can result in any of the physical processes, 
which they represent, we could write 

U, + uu, + 4, = A 
n-e*+&,, = B 

n , + ( n u ) ,  = c 
where A, B and C contain the fluctuations from each equation. Carrying out the 
analysis in section 1, a perturbed KdV equation results: 

(101) 
Thus, fluctuations in U, n, or 4 might be introduced, determining the forms of A, B 
and C. 

We now return to the perturbation analysis of equation (96). Employing the usual 
perturbation analysis, which we used in earlier sections, we find for the amplitude 

*, + *** +f*,,, = A + C + B,. 

A,=4vv,=(SRlsech2 4)-!yA 

xo, = 477’ = 2A 

x l , = ~ ( S R 1 4  1 sech24+tanhq5+tanh’4)--- .  Y 
477 377 

Integrating equation (102), we have 

v 2  =I jot (S(s)Rlsech* 4 )  exp[$sy(s - t ) ]  ds. 

We now assume that R[u ]  depends on 77 according to 
A 

R [ u o ] =  qPR[uo]. (106) 
Equation (105) is then a n  integral equation for 77. By iterating we can, in principle, 
solve for 77 to any order in E. To first order in E we find 
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We can use this information to finish integrating the conditions in equations 
(102)-( 104). Thus, the other soliton parameters are given to first order as 

x0=x0(0)+4~:( f + i  E ,g-’jo‘ds I:ds‘(l(sr)g/sech2 4)exp[dsy(sr-s)])  (109) 

A % A,+ E lo‘ (l(s)&ech2 4) exp[+sy(s - t ) ]  d s  

x , - x x , ( 0 ) + ~  ds(l(s)Zl$sech’ 4 + t a n h 4 + t a n h 2 4 ) - - t t .  EY 
4770 I’ 3 770 

Finally, we can write the soliton solution in the form 

uo(x, t )  = (Ao+ E W)sech’(+,+ E T ~ Q )  

which is in the same form we have worked with previously. (See equation (68).) Here 
we have defined 

E y t  1 
3770 E 

x - 477:t +--- X,(O) - X,(O) 

W = 77: lo‘ (l(s)&ech2 4 )  exp[;sy(s - t ) ]  d s  

‘r3 {o‘ds(l(s)$14 sech24+tanh  4 + t a n h 2  4)-2 ds W ( s ) + T X o W ( t ) .  1 
4770 

(115) 

All that remains is to compute the ensemble averages (QW), and (Q2)s. In this 
general formalism we can take a few more steps before specifying the form of R[u]. 
Namely, we can compute the averages (QW),  and (Q2)s,  which are presented in 
appendix 3.  The results are 

lof Q=--  

3 N77ip-3 3 77F-2 N 
XoG2[1 - e x p ( - h t ) l  3 2 ~ y  (OW),= - 16Ey G1[1 -eXP(-%Yt)l+ 

9 Nvip 
1 6 ~ ~ ~ ’  G2[ 1 + exp( -!Eyt) - 2 exp( - $ ~ y t ) ]  -- 

and 
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where we have defined 
I 

G, = [ d 4  d2 [  uo](  4 sech4 4 + sech' 4 tanh 4 + sech' 4 - sech4 4 )  (118) 
--3i 

X 

G2 E [ d 4  d'[ U,] sech4 4 

G, = [ d 4  d2 [  uo] (  4 sech' 4 + tanh 4 + tanh' 4 ) 2  

--x 

X 

--x 

We can study these averages to get information about (uo) , .  In fact, to first order 
in E we have 

where 

that 

(uo),=477i (-1)" exp(a^m+bm') 
3: 

m = 1  

â = 240+  ( E /  v0)( Ow), = 2&. 

Using this new phase and  the expansion in (81), we have for large b 

We look now at the behaviour of these averages for large times and  large x, such 
that x0 is fixed. Using b = ~ E ' ~ I : ( Q ~ ) ~ ,  we have 

q I ; P - 4  

EY 
b-- 

8 

and we also find 

Thus, from equation (123) we see that the behaviour of the averaged soliton solution 
yields a Gaussian wavepacket whose amplitude decays as t - " 2  and whose width grows 
as t"'. Finally, we note that the effect of (QW) ,  is to add  a constant phase shift to 
the solution to first order in E. 

We can also obtain information about the case of no damping from the results in 
equations ( 1  16) and ( 1  17). Namely, we take the limit y + 0 in these equations and find 

77Sp-6 

( Q ' ) g  + ( Q 2 ) s , o  = 7 N (  G, + 8q:t'GI - 277,,,yOGI t - 8qiG,t'+ yq iG2t ' ) .  

Now, the large-time behaviour is given by 

(127) 

(QW),,,- -77iPNG2tZ (128) 

( Q'),,, - $7;" NG2t3. (129) 
From the asymptotic expansion in equation (123) and the definition of b, this leads 
to a Gaussian wavepacket with an ampltiude decaying as t -3 /2  and width growing as 
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t3’*. Thus, we have found that the same power laws result in the phase- and time- 
dependent noise cases under the approximations made above, as we had obtained in 
the purely time-dependent cases. 

The above results have a generic character for any R [ u ]  of the form 77,?j”d[u], since 
we made the major lowest-order approximation of the integral equation for 77 back in 
equation (105). In principle, we can go back and carry this out to higher order in E 

and establish the range of validity of this approximation. 
For completeness, we can evaluate the integrals for the two particular cases ( i )  

R[u]  = u and ( i i )  R [ u ]  = U,. 
For these cases we have 

6. Conclusion 

In this paper we have studied the stochastic K d v  equation with and without damping 
for the case of time- and space-dependent noise. We have computed the ensemble 
averages for these cases with respect to a fixed frame; i.e. the averaging was performed 
with fixed x coordinates. In general we have found that asymptotically in time the 
noise causes the shape of the averaged solution to change from the sech’ 4 form to 
that of a Gaussian packet, whose amplitude decays and whose width grows in much 
the same way as in the case of noise which is purely time dependent. 

The method employed to study this equation was based on the inversion of the 
linearised Kdv equation to obtain the first-order correction to the solution of equation 
(1) about a single soliton. In the process it was found that the soliton parameters had 
to obey secularity conditions in order to prevent any growth of the solution in time. 
Using these conditions in the leading order solution, we found the asymptotic behaviour 
of the solution. 
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Appendix 1. Inversion of the linearised Kdv equation 

The major step in solving equation (38) is the inversion of the operator 2’ given in 
(39).  This can be done by using the squared Schrodinger eigenfunctions, their deriva- 
tives and some of the formalism from the theory of the inverse scattering transform 
(ET) [12]. We will begin by discussing the relationship between the K d v  equation, the 
associated ‘Lax pair’, and the linearised operator we are seeking to invert. Having 
established this relation, we will then proceed to discuss the inversion of the operator 
for the special case of u 0 = 2 r ] *  sech’ ~ ( x - X ) .  



1078 R L Herman 

It is well known that the K d v  equation 

q, + 6qq, + qxry = 0 (Al . l )  

is an integrability condition for the equations [ 11, 121 
U , ,  + ( A 2  + q )  U = 0 

U , +  ~, , ,+3(4  - A ' ) u ,  = Y U .  

(A1.2) 

(A1.3) 

Namely, U,,,  = U,,, provided q satisfies ( A l . l )  and A ,  = 0. In these equations A is an 
eigenvalue, and the constant y is determined from the assumed asymptotic behaviour 
of U in the regions where q vanishes. In particular, if we assume that U - elA' ( U  - e-'',) 
as x+co ( x + - w ) ,  then y =  -4iA3 (4iA3). Keeping with standard notation [12], we 
will denote such solutions as G2 (&). 

We now consider the function f = d,( U ' ) ) ,  and operate on it with 2 from (39). Using 
equations ( A l . l )  and (A1.2), we find that f satisfies the eigenvalue problem 

2f = 2yJ (Al.4) 
The aim of the following analysis is to use these eigenfunctions as a basis in which to 
expand the solution of equation (38). The unknown expansion coefficients will then 
be determined using orthogonality relations between the basis set and their adjoints. 
The details of this analysis rests on the solution of the Schrodinger eigenvalue problem 
(A1.2). 

In the Schrodinger eigenvalue problem there is a continuous spectrum for A'>  0 
and possible bound states for A *  < 0. The eigenstates for the continuous spectrum of 
3 are easily found from these A ;  however, the bound states dYu21AA are not sufficient 
to complete the set of states [17]. We find the required states from the work of Sachs 
[18]. I f f ( x )  is continuous and L' ,  and if q satisfies 

l l ~ I l L F {  (1+x2)q(x)dx-  (A1.5) 

then Sachs shows howf(x)  can be expanded in the eigenfunctions of (A1.4). Applying 
his expansion to the one-soliton case, q = uo in (A1.2), one can write, using some 
notation from Newell [19], 

X 

- X  

where 

A - iv  
A +iq 

a ( A )  =- A ,  = iv. 

(A1.7) 

(Al.8) 

The desired complete set for perturbations about a one-soliton solution is given by 

QA(x, t ;  A)-a ,$ :  @;'(x, t ,  ax$:lAl (A1.9) 

)1;4(x, t )  a A a , $ S / A ,  - 7 - A d r 4 : l h l .  f f I  (Al .  10) 

{OA, @;, A;}. These basis states are related to the Schrodinger eigenfunctions by 

1 
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The complementary, or adjoint, states to these are given by 

@(x, t ;  A )  4; t ,  4SIAl (Al.11) 

Al(x,  f )  = 8,+4;IA, - a:JA4:IAl. (Al.12) 

Before returning to the inversion of the linearised Kdv equation, we need two 
properties of the basis states. First, the result of operating on the basis states with 9 
yields [16] 

9QA = 9@f = -8iA:O.;’ 9 A f  = -8iA:Af -48iA:@f. (A1.13) 

Second, we will need the inner products between the basis states and the adjoint states 
[I61 

(@‘(A)I@(A’))  = 2.rriAa2(A)S(A - A ’ )  ( A l .  14) 

(API@J = (@.PIA,) =- (A1.15) 

(APIA])  = o = (@fp,). ( A l .  16) 

1 

27  

The inner product (f(x)lg(x)) is defined by 

(Al.17) 

We can now proceed with the inversion of the linearised Kdv equation for perturba- 

a, = ( A l .  18) 

tions about a one-soliton solution, 

We assume that u1 can be expanded in the complete set of states as 
X 

uI = I dAf(A, t)QA(x, t ; ,  A)+f,(t)@f(x, t)+g,(r)Af(x, t ) .  (A1.19) 
-X 

Inserting this expansion into (Al . l8 ) ,  we have 

9 = I d A (.A - 8 i A ’f) @ A  ( A 1 + VI, - 8 7 ’fl + 48 7 *g I )@ ? + (g - 8 7 ’ g 1 A .;’. ( A  1.20) 

In order to obtain the coefficients of OA, Of  and A f ,  we take inner products on 
both sides of (A1.20) with the adjoint states and use the orthogonality relations 
(Al.14)-(A1.16) to obtain 

X 

-X 

(Al.21) 

f ~ ,  -8773f~+48772g~ = - 2 i d 9 1 A J  (A1.22) 

g, ,  -8713g1 = -2i7(91@1). (A1.23) 

These first-order differential equations for the expansion coefficients can easily be 
solved to obtain 

exp[8iA3( t - t ’ ) ]  jot dt ’  2.rriAa2(A) 
f ( A ,  t )  = f ( A ,  0) exp(8iA3t)+ (Al.24) 
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gl(r)=gl(0) exp(8q3t)-2iq df '(31@,) exp[8v3(t-  t')] Jp' (A1.25) 

(A1.26) 

In our analysis we have at t = 0: U = u 0 ;  i.e. U, = 0 for n > 1. So, in equations (A1.24)- 
(Al.26) the initial values of the expansion coefficients are zero. 

This completes the inversion of the linear operator. The specific forms for the basis 
states and the adjoints is found by solving (A1.2) and (A1.3) for q = u 0 .  We list these 
for reference as 

exp(-2iA#J/q -8iAv't) 
( i A  - 77)' @(x, r ;  A )  = (v2tanh2 4 + 2 i h ~ )  tanh + A 2 )  [ Al.27) 

Ql(x,  t )  =:exp(8~]'i) sech' #J 

A,(x, t )  = - -exp(8q3f)[(4+4v3t)  sech24+tanh  41 

(AI -28) 

(A1.29) 
1 

v 

@"(x, t ;  A )  = 
2 exp(2iA4lq +8iA7't) 

( i h  - q)' 
x [ - q 3  tanh' 4 +2ihq'tanh2 #J+(2h2q + v 3 )  tanh #J -i(A3+Av2)] 

(A1.30) 

(Al.3 1) 

[ Al.32) 

Qf = -iq exp(-8q3t) sech' 4 tanh 4 
'2 p = 2i exp( -8q3  t)[sech2 4 - (4 + 4 ~ ~ 1 )  sech' 4 tanh 41. 

Appendix 2. Ensemble averages (exp c V > ,  and ( W exp cV>,  

In section 4 we stated that the ensemble averages (exp cV), and ( W  exp cV), can be 
computed as 

(A2.1) 

(A2.2) 

Here we shall show that this is the case for the linear functions V and W of the 
Gaussian noise g(x), which satisfies 

(exp CV), = exp($c'( v2),) 
( w exp CV), = c( VW)S exp($c'( v'),). 

(A2.3) 

X 17 means that we multiply n / 2  products (5(x,)5(x,)), and sum over the ( n  - l)!! 
different combinations ( i , J ) .  x, can stand for either t i ,  which is needed in section 4, 
or (x,, f,), which we use in section 5 .  

We begin with the proof of (A2.1). Expanding the exponential, we have 

(A2.4) 
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Since V is assumed to be linear in the noise, we can use the Gaussian behaviour of 
the noise to compute 

(A2.5) 

Here we have taken the limit x, + x and used the fact that there are ( k  - l ) ! !  terms in 
the sum in (A2.3). 

Inserting this into equation (A2.4), we have 

= 2,- ( V2)1(21 - l)!! 
/ = o  (21)! 

= 1 C2(V2) 
= /=o  2 r(*) 1 

= exp(+c2( V2)s). (A2.6) 

Thus, we have proven equation (A2.1). 

we have 
Equation (A2.2) can be proven in the same manner. Expanding the exponential, 

Since both W and V are linear in i; we use (A2.3) to obtain 

k even 
k odd. 

(A2.7) 

(A2.8) 

The factor of k occurs because there are k possible choices for V, which can be paired 
with W. For k = 21 + 1 we have 

k( VW),( Vk-'), = (21 - I ) (  VW),( V"), 

= (21+ l ) ! ! (  VW),( V2)L. 

Therefore, (A2.7) evaluates to 

(A2.9) 

= c( vW), exp(+c2( v'),). (A2.10) 
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Appendix 3. Computation of the ensemble averages ( Q W ) ,  and ( Q 2 > S  

For our general stochastic perturbation term, given by ((x, r ) R [ u ] ,  we needed the 
ensemble averages ( Q  W), and ( Q2)s in order to discuss the average behaviour of the 
fluctuating soliton. We found Q and W in equations (1 14) and (1 15) as 

W = 72 i,’ (k(lsech2 4) exp[&y(s - t ) ]  d s  (A3.1) 

1 ‘ y 3  lor d s ( k l l 4  sech’ 4 + t a n h  4 + t a n h 2 4 ) - 2  ds  W(s)+:XoW(t). 
47la 

Q=--  

(A3.2) 

As each of these is linear in i, we see that the products QW and Q 2  are quadratic 
in the noise. In  order to average over these products, we define 

(((x, t ) ( ( x ’ ,  r ’ ) ) s  = N8(  t - r ’ ) S ( x  - x’). (A3.3) 

There are no complications in integrating out the S(x-x’) .  In doing so we are left 
with three types of integrals over the phase. We define these as 

G ,  = 
X 

d 4  R 2 [  uO]( 4 sech4 4 + sech’ 4 tanh 4 + sech’ 4 - sech4 4)  (A3.4) 

X 

G2 E 1 d 4  k 2 [  U,] sech4 4 

G3 = [ d 4  k’[ uO] (  4 sech‘ 4 + tanh 4 + tanh’ 4)’ 

--I 

X 

-X 

(A3.5) 

(A3.6) 

We are now left with integrations over the time variables. We can write the averages 

where we have defined the time integrals by 
rr r r  

VI = J d s  exp[:sy(s - t ) ]  J ds’8(s - s’) 
0 0 

V, = lor d s  exp[:sy(s - t ) ]  lo‘ ds’ I:’ ds” exp[:ey(s”- s ’ ) ] 8 ( s n -  s)  

r r  I-, 

d s  exp[$sy(s- t ) ]  ds’exp[:sy(s’- r ) ] 8 ( s ’ - s )  

V, = lor d s  lor ds’S(s - s’) 

V,  = lor ds j: ds, exp[:sy(s, - s)] ds‘ i,’ ds, exp[$sy(s, - s’) ]S(s,  - s,) 

V6= Jor d s  ds’ 1; ds,  exp[:ey(s, - -s ’ ) ]S(s,  -s). 

(A3.7) 

(A3.8) 

(A3.9) 

(A3.10) 

(A3.11) 

(A3.12) 

(A3.13) 

(A3.14) 
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These integrals are computed separately, noting that 

lof’ ds,  lof2 dsf(s2)6(s ,  - s 2 )  = 

We have 

3 
4EY 

VI = lof d s  exp[$ey(s - t ) ]  =- [ 1 - exp(:syt)] 

V2 = lof ds’  los’ ds” exp[$ey(2s”- t - s ’ ) ]  

3 f  
8EY 0 

= - [ ds’ exp[ -$EY(s‘+ t)][exp(fsys‘) - 13 

9 
328 y 

-- - [1 +exp(-;Eyr) -2 exp(-$syt)] 

3 
8 E Y  

V, = I,’ ds exp[$sy(2s - 2 t ) ]=  - [ 1 - exp( - f ~ y t ) ]  

V, = lof ds lof ds’6( s - s’) = t 

1083 

(A3.15) 

(A3.16) 

(A3.17) 

(A3.18) 

(A3.19) 

m i n (  s,s’l 

V,  = lof d s  I,’ ds‘ d r  exp[$sy(2r - s - s’)] 

=3 8EY I‘d.(  0 I,’ds’exp[-$sy(s+s‘)][exp(;sys’)-l] 

+ [ , y f  ds‘ exp[-$ey(s + s’)][exp(:eyt) - 11 

9 t  - 
-32~2y2 ds(2-2 exp(-$sys)-exp[$sy(s- t ) ]+exp[ -$~y(s+  t)] 

V, = lo’ d s  ji ds’ exp[$ey( s‘- s)]  

3 
4EY 

= - jo‘ ds[ 1 - exp( -$EYs)] 

) - -- (y t + exp(-$syt) - 1 , 
9 

16&’y2 

(A3.20) 

(A3.2 1) 

Inserting these results into equations (A3.7) and (A3.8), we find the averages sought 
as 

9 Nrlip 
1 6 ~  y (A3.22) -- G2[ 1 + exp(-$eyt) - 2 e x ~ (  - $ ~ y t ) ]  
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(A3.23) 
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